
LA-UR-21-20580
Approved for public release; distribution is unlimited.

Title: Matrix-Based Process Modeling in Microsoft Excel

Author(s): Sherwood, John Gregory

Intended for: Report

Issued: 2021-01-22

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National
Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher
recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,
or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as
work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom
and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its
technical correctness.

Matrix-Based Process Modeling in Microsoft Excel

John Sherwood

January 19, 2021

LA-UR-21-?????
Approved for public release;
distribution is unlimited

ii

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is managed by Triad National Security, LLC
for the National Nuclear Security Administration of the U.S. Department of Energy under contract 89233218CNA000001. By
acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to
publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los
Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S.
Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher’s right to publish;
as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

iii

Table of Contents
1. Methodology ... 1

1.1. Towards the Process Matrix.. 2

1.2. Final Output .. 3

1.3. Scaling Vector .. 3

1.4. Auxiliary Matrices ... 3

1.5. Putting it Together .. 5

1.6. Towards a Stochastic Model ... 5

1.7. Assumptions & Limitations ... 5

2. Implementation in Microsoft Excel ... 6

2.1. Assembling the Process Matrix ... 6

2.2. Taking the Inverse ... 8

2.3. The Scaling Vector ... 8

2.4. The Auxiliary Matrix .. 9

2.5. Implementing Basic Stochasticity ... 9

Conclusion ... 10

Works Cited ... 11

iv

This page intentionally has no information

1

Introduction

The purpose of this document is to describe the theory and methodology of matrix-based process
modeling and demonstrate its use through a generic process model within Microsoft Excel. This type of
model allows a modeler to quickly query various metrics, such as total production time, for a specified
production run. These matrix models tend to be quick to build and use, but come with certain
limitations and are more suited for smaller processes.

Matrix-based methods have been used in a variety of fields for modeling linkages between processes.
Within the field of economics, Input-Output (IO) models of the economy were developed by Wassily
Leontief during WWII to better track supply chains. These first IO models were used in part for war
planning [1]. Outside of economics, the mathematical discipline of graph theory uses adjacency matrices
which describe how different nodes (processes, people, or items) are linked by edges (product flows,
information flows, or relationships) [2]. These network models can be used to trace how an infectious
disease spreads within a community, given relationships or links between people. Finally, the field of Life
Cycle Assessment (LCA), which models the environmental impacts of products and processes, has been
using a matrix-based process modeling approach for the last two decades [3].

While matrices have been used in Operations Research (e.g., for the traveling salesman problem [4]) and
in chemical process modeling [5], I am unaware of their use specifically to model production processes.

Matrix-based process modeling provides a concise and relatively simple platform with which to track
inputs, outputs, and various flows through a production process. It is not a simulation, but rather an
analytical technique. As such, there are inherent limitations that the modeler ought to be aware of –
these are further described in Section 1.7.

This report consists of two main sections. Section 1 describes the methodology, while Section 2
demonstrates the implementation of a generic process model in Excel.

1. Methodology
A generic process flow shown in Figure 1 will be analyzed and used throughout this report. This process
contains a few elements that render modeling-by-hand challenging, including the existence of waste
streams (on Process 2 and 6), a rework or recycling stream (from Process 4 to 6), and pieces of equipment
used across multiple process steps. These interdependencies prohibit a modeler from directly counting
the number of cycles each process encounters for a specified output. The primary goal of a matrix-based
methodology is to capture these interdependencies and the iterative nature of rework in a concise form.
This matrix can be used to find the exact number of cycles for each process to produce some number of
products. Then, the number of process cycles can be used to study auxiliary metrics of the process, such
as equipment usage and worker-hours.

2

Figure 1. Generic process flow. Note wastes, rework, and multiple pieces of equipment and technicians.

 Towards the Process Matrix
Before looking at the process as a whole, the unit processes need to be quantified. Ultimately, I will link
these unit processes together in a matrix, but the initial approach is to build vectors for each individual
process. Consider Process 1, which has no inputs and outputs a product. The product of Process 1 will be
𝑃𝑃𝑑𝑑1. The product of Process 2 will be 𝑃𝑃𝑑𝑑2, and so on. Each process produces a single product that may be
used in one or more processes, or may be delivered to the final customer.

I will represent these product flows through a vector for each process. The vectors for Process 1 and
Process 2 are:

𝑃𝑃1 =

⎝

⎜
⎜
⎛

𝑃𝑃𝑑𝑑1
𝑃𝑃𝑑𝑑2
𝑃𝑃𝑑𝑑3
𝑃𝑃𝑑𝑑4
𝑃𝑃𝑑𝑑5
𝑃𝑃𝑑𝑑6⎠

⎟
⎟
⎞

=

⎝

⎜⎜
⎛

1
0
0
0
0
0⎠

⎟⎟
⎞

, 𝑃𝑃2 =

⎝

⎜⎜
⎛

−1
0.9
0
0
0
0 ⎠

⎟⎟
⎞

 (1.1)

Here, Process 1 has no inputs from the other processes, and outputs one unit of its product. Process 2
takes in one unit from Process 1. Because of the 10% waste stream, it can only output 0.9 units of 𝑃𝑃𝑑𝑑2 for
every unit of 𝑃𝑃𝑑𝑑1 input.

The remaining vectors for the other unit processes are:

𝑃𝑃3 =

⎝

⎜
⎜
⎛

𝑃𝑃𝑑𝑑1
𝑃𝑃𝑑𝑑2
𝑃𝑃𝑑𝑑3
𝑃𝑃𝑑𝑑4
𝑃𝑃𝑑𝑑5
𝑃𝑃𝑑𝑑6⎠

⎟
⎟
⎞

=

⎝

⎜⎜
⎛

0
0
1
0
0

−0.1⎠

⎟⎟
⎞

, 𝑃𝑃4 =

⎝

⎜⎜
⎛

0
0
−1
1
0
0 ⎠

⎟⎟
⎞

, 𝑃𝑃5 =

⎝

⎜⎜
⎛

0
−0.1

0
−1
1
0 ⎠

⎟⎟
⎞

, 𝑃𝑃6 =

⎝

⎜⎜
⎛

0
0
0
−1
0

0.9⎠

⎟⎟
⎞

 (1.2)

There are a few things to note here. I start with describing the rework stream. Process 4 outputs 1 unit of
product every cycle, despite two different output streams. This differs from the waste stream in Process 2,
because the rework stays within the technical system. Therefore, Process 4 outputs 1 rather than 0.9.
Process 6, a rework or inspection step, outputs 0.9 units for each input from Process 4 that it receives.

3

Process 3 takes in -0.1 of 𝑃𝑃𝑑𝑑6 for each unit of output, because the rework stream was specified as 10% of
the throughput. Finally, Process 5 handles a unit conversion – only 1/10th of 𝑃𝑃𝑑𝑑2 (a ten-pack) is needed to
produce one unit of the final output.

These vectors can be stacked together to form a matrix, often designated the A matrix:

𝐀𝐀 = [𝑃𝑃1|𝑃𝑃2|𝑃𝑃3|𝑃𝑃4|𝑃𝑃5|𝑃𝑃6] =

⎣
⎢
⎢
⎢
⎢
⎡
1 −1 0 0 0 0
0 0.9 0 0 −0.1 0
0 0 1 −1 0 0
0 0 0 1 −1 −1
0 0 0 0 1 0
0 0 −0.1 0 0 0.9⎦

⎥
⎥
⎥
⎥
⎤

 (1.3)

The A matrix is usually referred to as the “technical” matrix or “process” matrix [3] [6]. It represents, and
only represents, the outputs and linkages of each process running for one cycle. It does not directly
account for waste, energy or material inputs, production times, etc. And, it does not capture the number
of cycles needed to produce a specified final output.

 Final Output
Another vector specifies the desired final output. This vector, 𝐹𝐹, specifies the number of units of each
product delivered to the customer. For example, 100 finished products (𝑃𝑃𝑑𝑑5) would be represented as:

𝐹𝐹 =

⎝

⎜
⎜
⎛

𝑃𝑃𝑑𝑑1
𝑃𝑃𝑑𝑑2
𝑃𝑃𝑑𝑑3
𝑃𝑃𝑑𝑑4
𝑃𝑃𝑑𝑑5
𝑃𝑃𝑑𝑑6⎠

⎟
⎟
⎞

=

⎝

⎜⎜
⎛

0
0
0
0

100
0 ⎠

⎟⎟
⎞

 (1.4)

This vector, 𝐹𝐹, is often called the final demand vector. Note that, if I wanted to remove 20 units of 𝑃𝑃𝑑𝑑2
for destructive testing during the production process, I could change the second entry of 𝐹𝐹 to 20 to
account for the additional demand.

 Scaling Vector
The final piece of this puzzle is to determine the number of cycles needed to produce 𝐹𝐹. If 𝐀𝐀 represents
the outputs and requirements of processes for one cycle, then I could multiply 𝐀𝐀 by a number of cycles
for each process to determine the final output, 𝐹𝐹. That is,

 𝐀𝐀𝑆𝑆 = 𝐹𝐹 (1.5)

Where 𝑆𝑆 is a scaling vector representing the number of cycles for each process. However, as noted in
Equation 1.4, 𝐹𝐹 is specified and 𝑆𝑆 is to be solved for. Therefore,

 𝐀𝐀−1𝐹𝐹 = 𝑆𝑆 (1.6)

Equation 1.6 is the core component of this matrix-based methodology. To reiterate, 𝑆𝑆 represents the
number of cycles that each of the six processes must run to produce the final output. In this example,

 𝑆𝑆 = (11. 1� 11. 1� 112.5 112.5 100 12.5)𝑇𝑇 (1.7)
 Auxiliary Matrices

It is powerful and useful to know the number of cycles for each process to meet a final demand,
particularly with auxiliary data in the correct format. If a modeler collects data on process runtime per

4

unit output, this can be used with the scaling vector to determine the total runtime needed to produce
the final demand. For example:

 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = (60 120 240 240 15 20) [𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚]

𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∙ 𝑆𝑆 = 57,750 [𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚]
(1.8)

Here, 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is a vector representing each process’s runtime. The column number represents the
process number, as in the 𝐀𝐀 matrix. The total runtime to produce 100 final units is 57,750 minutes.

Other vectors could be added to the analysis, representing equipment operating times, labor hours, mass
flow, radiation exposure, etc. Any metric that occurs each time a process is cycled can be tabulated here.
These vectors can be combined into what is known as the 𝐁𝐁 matrix, seen in Equation 1.9. The 𝐁𝐁 matrix is
typically called the environmental matrix, intervention matrix, or auxiliary matrix. This tracks
environmental factors associated with a process: anything that is not the flow of production units.

𝐁𝐁 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸1𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸2𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸3𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑇𝑇𝑇𝑇𝑇𝑇ℎ1𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑇𝑇𝑇𝑇𝑇𝑇ℎ2𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑇𝑇𝑇𝑇𝑇𝑇ℎ3𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡
60 120 240 240 15 20
0 120 120 0 15 0

30 0 120 0 0 0
30 0 0 240 0 0
0 120 240 120 0 0

60 0 0 120 15 0
0 0 0 0 0 20⎦

⎥
⎥
⎥
⎥
⎥
⎤

, 𝐁𝐁𝑆𝑆 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
57,750
16,333
13,833
27,333
41,833
15,667

250 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 (1.9)

The final values at the right side of Equation 1.9 represent the total process runtimes, total equipment
runtimes, and total labor time in minutes. So, the labor requirements for technician three is 250 minutes.
Just as Equation 1.8 multiplies runtimes by the scaling vector, multiplying the 𝐁𝐁 matrix by the scaling
vector provides the total amounts for each 𝐁𝐁 matrix metric. Note that, while the above example uses
minutes for all rows, each row may have separate units. It is possible to track, for example, runtime, water
usage, electricity usage, radiation exposure, and wastes all in the same 𝐁𝐁 matrix.

For completeness within this example, I will show the wastes associated with this process:

 𝐁𝐁 = �𝑃𝑃𝑑𝑑2 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊
𝑃𝑃𝑑𝑑6 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊� = �0 0.1 0 0 0 0

0 0 0 0 0 0.1� , 𝐁𝐁𝑆𝑆 = �1.11�
1.25

� (1.10)

These wastes are separated into two rows in order to track wastes from each individual process. The total
𝑃𝑃𝑑𝑑2 waste is 1.11 units, and the total 𝑃𝑃𝑑𝑑6 waste is 1.25 units. These are not directly comparable because
of the different product types (remember that 𝑃𝑃𝑑𝑑2 represents a 10-pack of widgets). If I only cared about
the total waste, rather than each individual waste stream, I could combine the waste streams into a single
row of the 𝐁𝐁 matrix as long as I convert to equivalent units. So, the 𝑃𝑃𝑑𝑑2 waste would need to be multiplied
by a factor of 10 to track individual units.

This technique demonstrated above of each waste stream represented as a single row could also be used
to track, for example, individual process runtimes. To do so, the 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 vector in Equation 1.8 would
need to be diagonalized into a matrix where each row contains only the runtime for a single process. In
doing so, the 𝐁𝐁 matrix output would represent the total runtime for each process similar to how Equation
1.10 shows the total waste for each relevant waste stream.

5

 Putting it Together
In order to generate the 𝐀𝐀 and 𝐁𝐁 matrices, a modeler only requires a process flow sheet and whichever
metrics they wish to track per unit process. Once the matrices are constructed in a spreadsheet or
programming environment (e.g. MATLAB), the modeler could change 𝐹𝐹, the final demand, at will to
understand their aggregate metrics across different output scenarios. The normal usage of this model
requires a specific number of final products as the input. However, Excel’s goal-seek or solver tool could
be used to find the number of final products that could be produced given a certain constraint, such as
total runtime. As such, this matrix-based model provides a concise, quick tool with which to investigate
various metrics within a production environment.

 Towards a Stochastic Model
Note that this methodology is deterministic in its current form. All process variables are precisely specified
as point values. Unfortunately, most process metrics exist within a range of values due to uncertainty or
variations within the production environment. This variation or uncertainty can be accommodated by two
different “levels” within a matrix-based model using a Monte Carlo method.

The first “level” of stochasticity that this model can handle is within the 𝐁𝐁 matrix. Assume that process
times (Equation 1.8) vary according to some distribution. I may wish to determine the average (i.e., mean)
total production time. To accomplish this, the 𝐁𝐁 matrix could be expanded by multiple rows, where each
row is a different “run,” or instantiation of point numbers generated by the known distribution of the
runtime. That is, the 𝐁𝐁 matrix could look like:

𝐁𝐁 =

⎣
⎢
⎢
⎢
⎡
𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡1
𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡2
𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡3
𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡4
𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡5⎦

⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
60 120 240 240 15 20
52 121 200 238 16 22
73 119 220 232 14 32
58 121 280 245 13 18
65 122 245 241 15 25⎦

⎥
⎥
⎥
⎤

, 𝐁𝐁𝑆𝑆 =

⎣
⎢
⎢
⎢
⎡
57,750
53,072
54,783
62,576
58,565⎦

⎥
⎥
⎥
⎤
 (1.11)

Then, I would calculate the mean value from the result of Equation 1.11, which is 57,349 minutes. (Note
that a minimum of 100 “runs” is generally recommended to achieve stable results, depending on the range
and type of distributions [3].)

It is important to note that, within this first “level” of stochasticity, the process flow represented in the 𝐀𝐀
matrix is still deterministic. The 𝐀𝐀 matrix contains information about the efficiency of processes,
represented in reduced throughput for Process 2 and 6. These values are often uncertain, or at least vary,
in reality.

Incorporating uncertainties into the 𝐀𝐀 matrix is the second “level” of stochasticity. In order to incorporate
this uncertainty, I would need to create several versions of the 𝐀𝐀 matrix and invert them in order to find
a different scaling vector for each version. Inverting many matrices can become computationally
expensive and is best done in a programming environment such as MATLAB. Note that depending on the
process flow, a small change in one process could have significant downstream effects. It may be possible
to use perturbation theory to better account for uncertainty within the 𝐀𝐀 matrix, though more research
would be necessary [3].

 Assumptions & Limitations
The relative simplicity of this modeling technique implies a set of assumptions and limitations, including:

1) The model represents a steady-state system that scales linearly. This means that the entire production
process, and all auxiliary metrics, are the exact same for the first unit and for the millionth unit of
production.

6

2) The model usually neglects temporal and environmental variation. The model, as currently structured,
only accounts for direct process time. It does not account for lead times, production delays,
stoppages, or other periodic factors that may affect a production schedule. Similarly, the model does
not account for various environmental factors (e.g. equipment wear-out affecting yield rates or
machining time) that may influence production times in reality. Of course, the model could account
for these variables if the modeler factors them into the unit-process per-cycle runtimes (Equation 1.8).
But note that these sources of variation would get lumped into a single average process runtime.

3) Rework and waste streams must occur as specified. The model cannot account for process
improvement or learning during production. That is, there will be the same amount of waste from the
first units of production and the millionth units of production. (It may be possible to include learning
rates as a model extension, though it is outside the scope of this document.)

4) All relevant process information must be quantifiable and known; the 𝐀𝐀 matrix must be fully specified.
This means that if I build out rows and columns of the 𝐀𝐀 matrix to represent a recycling stream, I must
fill in values for those rows and columns. If I build out the 𝐀𝐀 matrix, then later seek recycling data
required to fill it in, the model will not be solvable during the interim. Data must be entered for every
matrix element – either real data or placeholder values.

5) The 𝐀𝐀 matrix must be square to be invertible in Equation 1.6. This implies that each process (each
column) may only create one product (row). Chemical processes (e.g. distillation columns)
occasionally produce co-products (jet fuel, gasoline, diesel), which are difficult to account for within
this model structure. In this scenario, a solution may be to divide the single chemical process into
multiple artificial processes, one per co-product, to maintain a square matrix. Furthermore, each
product may only have one process. That is, there cannot be multiple processes that produce the
same product – parallel equipment must either be modeled as a single process, or their products must
be tracked individually. (The model can be extended to utilize a rectangular matrix, though it is outside
the scope of this document.)

2. Implementation in Microsoft Excel
This section demonstrates how to build a matrix-based process model in Excel. Excel is an appropriate
choice for implementing smaller-scale models (e.g. processes with 1-250 process steps). Excel is
ubiquitous which allows for model dissemination and sharing. It also contains all the features necessary
to implement a matrix model. With that said, Excel lacks version control – it can be difficult to track precise
changes to a model over time. Excel can become ad-hoc and is vulnerable to human error – it is easy to
inadvertently edit a cell, or to create an unorganized worksheet. Excel is also limited from advanced
modeling techniques without the use of VBA code. For these reasons, MATLAB or a programming
environment may be an appropriate alternative for larger matrix-based models or those requiring more
features. (Though, know that MATLAB and other tools are not necessarily immune to the above issues.)

 Assembling the Process Matrix
The first step within Excel is to assemble 𝐀𝐀, the process matrix. As a reminder, each column of 𝐀𝐀
represents a process, while each row represents a product used or made within a process. There are at
least two methods of building 𝐀𝐀 in Excel: directly and with a Pivot Table.

I have directly recreated the process matrix from Equation 1.3 here, in Figure 2. Note that I used Column
A to display the units for each process in order to keep track of unit conversions (such as in Cell G3)

7

Figure 2. The process matrix implemented in Excel

Another option to build the process matrix is through a Pivot Table and process list. Directly building a
matrix may be time consuming and prone to human error for systems with many processes. Because of
this, it may be beneficial to build the equivalent of an adjacency list, to use a graph theory term (the 𝐀𝐀
matrix is nearly equivalent to a weighted adjacency matrix; adjacency lists are another form of the same
information). This list is shown in Figure 3 below. Here, each row of data represents a link, or value within
the process matrix. Values have associated processes (Columns A and B) and products (Column C). The
units in Column E are not strictly necessary, but may help track information.

Figure 3. The process list which, when used with a Pivot Table, will generate a process matrix

Selecting this list and creating a pivot table will generate the process matrix shown in Panel C of Figure 4.
To use this Pivot Table in a matrix function, zeros must be added to empty cells. This option is within the
Pivot Table options (available after creating the Pivot Table) and is highlighted in Panel B.

8

Figure 4. Pivot Table configuration, settings, and output

 Taking the Inverse
The next step within Excel is to generate the inverse matrix of 𝐀𝐀, which is 𝐀𝐀−1 in Equation 1.6. Excel
contains matrix functions, though they can be difficult to use. To use the matrix inversion function,
MINVERSE, I must first select an array of precisely the correct size – the location of the output. Then, enter
the function and select the original matrix (shown in Panel A of Figure 5). Finally, use the keys control +
shift + enter to apply the equation to the selected range. Note that these keys turn the selected range
into an array formula. The result is shown in Panel B of Figure 5.

Figure 5. Creating an inverse matrix in Excel using the keys control + shift + enter

 The Scaling Vector
Next, I will create a final demand vector and specify the final desired output. In this example, the final
demand is 100 units of 𝑃𝑃𝑑𝑑5. I will then highlight cells to be used for the scaling vector and will use the
MMULT command to multiply 𝐀𝐀−1𝐹𝐹, as shown in Figure 6. Again use control + shift + enter to generate
the scaling vector.

9

Figure 6. Generating the scaling vector from the inverse process matrix and a final demand

 The Auxiliary Matrix
Finally, I will set up relevant auxiliary matrices. There are three different auxiliary matrices in Figure 7: one
to track equipment runtime, one to track technician worktime, and one to track radiation exposure. These
could be combined into a single matrix – keeping them apart is mere personal preference.

Figure 7. Using auxiliary matrices with the scaling vector to determine total values of various metrics

In order to calculate the total values for the various metrics, I will use the MMULT function, select the 𝐁𝐁
matrix and the scaling factor, and use control + shift + enter as before. The outputs, shown in Column J of
Figure 7, represent the total value for each row’s metric after producing the final demand specified.

 Implementing Basic Stochasticity
The first “level” of stochasticity discussed in Section 1.6 can be easily implemented in Excel. As a reminder,
this “level” is uncertainty within the auxiliary metrics, but not the process itself. Figure 8 shows a basic
implementation of this uncertainty. For each process, a uniform distribution with upper and lower bounds
are defined in Rows 13 and 14 of Figure 8. The RANDBETWEEN function is used across Rows 17-22 to
generate values. Calculation of totals proceeds as any other 𝐁𝐁 matrix. The final step is to take the mean
of Column J to determine the average process time, shown at the bottom right of Figure 8.

10

Figure 8. Basic stochasticity in Excel. Rows 13 and 14 define a uniform distribution while 17-22 implement the model

In this example, only six “runs” or instances are used for the Monte Carlo model. However, a modeler
should likely use between 100 and 10,000 runs depending on the amount of uncertainty and ranges of
distributions [3].

Conclusion
As demonstrated above, a matrix-based process model creates a concise representation of a process and
enables calculation of many different metrics of interest. Furthermore, this model can be easily
implemented in Excel. Excel allows for a level of transparency, edit-ability, and share-ability not often
found in other modeling programs. The Excel model could be expanded upon, such as by creating an
interactive dashboard sheet, to better control and utilize the methodology. This technique is best-suited
for smaller processes, or instances where the customer requires a “quick” answer and can accept the
assumptions and limitations described in Section 1.7. If the limitations are acceptable, this technique
provides a good option for process modeling.

11

Works Cited

[1] P. D. Blair and R. E. Miller, Input-Output Analysis: Foundations and Extensions, United Kingdom:
Cambridge University Press, 2009.

[2] M. Newman, Networks, United Kingdom: OUP Oxford, 2018.

[3] R. Heijungs and S. Suh, The Computational Structure of Life Cycle Assessment, Netherlands: Springer
Netherlands, 2013.

[4] G. G. Brown, "Modeling," in INFORMS Analytics Body of Knowledge, United Kingdom, Wiley, 2018,
pp. 155-198.

[5] S. R. Upreti, Process Modeling and Simulation for Chemical Engineers: Theory and Practice, Germany:
Wiley, 2017.

[6] J. Sherwood, R. Clabeaux and M. Carbajales-Dale, "An extended environmental input–output lifecycle
assessment model to study the urban food–energy–water nexus," Environmental Research Letters,
vol. 12, no. 105003, 2017.

12

For more information, please contact:
John Sherwood, Ph.D.

Process Modeling and Analysis Group (E-2)
Los Alamos National Laboratory

Los Alamos, NM 87545
(505) 664-0295

jsherwood@lanl.gov

	1. Methodology
	1.1. Towards the Process Matrix
	1.2. Final Output
	1.3. Scaling Vector
	1.4. Auxiliary Matrices
	1.5. Putting it Together
	1.6. Towards a Stochastic Model
	1.7. Assumptions & Limitations

	2. Implementation in Microsoft Excel
	2.
	2.1. Assembling the Process Matrix
	2.2. Taking the Inverse
	2.3. The Scaling Vector
	2.4. The Auxiliary Matrix
	2.5. Implementing Basic Stochasticity

	Conclusion
	Works Cited

